Abstract

Field surveys over 2 years in contiguous beds of the seagrassesZostera capricorni andPosidonia australis showed that the green algaCodium duthieae was consistently more abundant inZ. capricorni than inP. australis. In 1 year, mature plants were also more abundant at the boundary between the seagrass beds than in either bed. Field experiments and programmes of sampling were used to investigate three potential explanations for the unusual distribution of this alga: (1) that the availability of substrata suitable for attachment of the alga differed between the two seagrass beds; (2) that mortality of matureC. duthieae differed between the seagrass beds; and/or (3) that the intensity of recruitment was different in the two seagrass beds.C. duthieae plants were exclusively epibionts of the bivalveAnadara trapezia. Detailed sampling showed that the abundance ofA. trapezia was similar in both seagrass beds and that the distribution of bivalves suitable as substrata forC. duthieae plants was not obviously related to proximity to the boundary between the beds. Two experiments investigated the survival ofC. duthieae plants in each bed. In the first, matureC. duthieae plants transplanted into theP. australis bed suffered similar rates of mortality to plants which were disturbed and moved within theZ. capricorni bed or which were left undisturbed in theZ. capricorni bed. Fewer of the host bivalves were recovered from theZ. capricorni bed, however, indicating that the mechanism of mortality differed between the beds, hosts being more frequently dislodged in theZ. capricorni bed. Removal of the leaves of the seagrasses had consistently greater effects on near-bottom current velocities in theZ. capricorni bed than in theP. australis bed and significantly increased mortality ofC. duthieae in theZ. capricorni bed. Survival of plants was greater in plots of artificial leaves ofP. australis placed in theZ. capricorni bed than in plots of the naturalZ. capricorni leaves or plots where the natural leaves were removed. Most mortality in theZ. capricorni bed was due to dislodgement of the alga and its bivalve substratum. Corresponding manipulations of leaves in theP. australis bed had consistently smaller effects on survivorship of both the alga and its host. Patterns in the recruitment of the alga most clearly reflected the distribution of adults.C. duthieae recruits were 5 times more abundant in theZ. capricorni bed and at the boundary between the two beds than in theP. australis bed. The results demonstrate how habitat structure, provided by the canopy of leaves of the two species of seagrass, can have contrasting effects on the recruitment and mortality of a macroalga. In the case ofC. duthieae, it appears that the differential pattern of recruitment is the primary determinant of the distribution of adult plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.