Abstract

Ebola (EBOV) and Marburg viruses (MARV) cause severe hemorrhagic fever associated with high mortality rates in humans. A better understanding of filovirus-host interactions that regulate the EBOV and MARV lifecycles can provide biological and mechanistic insight critical for therapeutic development. EBOV glycoprotein (eGP) and MARV glycoprotein (mGP) mediate entry into host cells primarily by actin-dependent macropinocytosis. Here, we identified actin-binding cytoskeletal crosslinking proteins filamin A (FLNa) and B (FLNb) as important regulators of both EBOV and MARV entry. We found that entry of pseudotype psVSV-RFP-eGP, infectious recombinant rVSV-eGP-mCherry, and live authentic EBOV and MARV was inhibited in filamin A knockdown (FLNaKD) cells, but was surprisingly enhanced in filamin B knockdown (FLNbKD) cells. Mechanistically, our findings suggest that differential regulation of macropinocytosis by FLNa and FLNb likely contributes to their specific effects on EBOV and MARV entry. This study is the first to identify the filamin family of proteins as regulators of EBOV and MARV entry. These findings may provide insight into the development of new countermeasures to prevent EBOV and MARV infections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.