Abstract
Management of cerebral perfusion pressure (CPP) is thought to be important for the treatment of traumatic brain injury (TBI). Vasopressors have been advocated as a method of increasing mean arterial blood pressure (mABP) and cerebral perfusion pressure (CPP) in the face of rising intracranial pressure (ICP). There are unresolved issues and theoretical risks about this therapy. This study therefore examined the effects of dopamine on physiological and MRI/MRS parameters in (1) a rodent model of rapidly rising intracranial pressure, caused by diffuse injury with secondary insult and (2) a model of cortical contusion. Dopamine was capable of restoring CPP in the model of rapidly rising ICP. This CPP restoration was associated with a partial restoration of CBF. Two profiles of change in the Apparent Diffusion Coefficient of water (ADCw) were seen; one in which ADCw recovered to baseline, and one in which ADCw remained persistently low. Dopamine did not alter these profiles. MRI assessed tissue water content was increased four hours after injury and dopamine increased cerebral water content in both subgroups of injury; significantly in the group with a persistently low ADCw (p < 0.01). In contusional injury, dopamine significantly worsened edema in both the ipsi- and contralateral hippocampus and temporal cortex. This occurred in the absence of ADCw changes, except in the contralateral hippocampus, where both water content and ADCw values rose with treatment, suggesting extracellular accumulation of water. In conclusion, although dopamine is capable of partially restoring CBF after injury, situations exist in which dopamine therapy worsens the swelling process. It is possible therefore that subgroups of patients exist who experience adverse effects of vasopressor treatment, and consequently the effects of vasopressor therapy in the clinical setting need to be more carefully evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.