Abstract

Delivery of DNA to cells remains a key challenge towards development of gene therapy. A better understanding of the properties involved in stability and transfection efficiency of the vector could critically contribute to the improvement of delivery vehicles. In the present work we have chosen two peptides differing only in amphipathicity and explored how presence of cysteine affects DNA uptake and transfection efficiency. We report an unusual observation that addition of cysteine selectively increases transfection efficiency of secondary amphipathic peptide (Mgpe-9) and causes a drop in the primary amphipathic peptide (Mgpe-10). Our results point the effect of cysteine is dictated by the importance of physicochemical properties of the carrier peptide. We also report a DNA delivery agent Mgpe-9 exhibiting high transfection efficiency in multiple cell lines (including hard-to-transfect cell lines) with minimal cytotoxicity which can be further explored for in vivo applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call