Abstract
There have been a very limited number of systematic studies on PM2.5 compositions and their source contribution in Southeast Asia. This study aims to explore the characteristics of PM2.5 composition collected in Chiang Mai (Thailand) during La Niña and El Niño years and to apportion their sources during smoke haze and non-haze periods. The average PM2.5 concentration of smoke haze episode in 2019 (El Niño) was much higher than in 2017 (La Niña). The ratios of organic carbon (OC) to elemental carbon (EC), as well as K (biomass burning (BB) tracer) to PM2.5, were higher during smoke haze episodes in 2019 than in 2017 indicating a significant influence from BB. The ratios of secondary organic carbon (SOC) levels to primary organic carbon (POC) levels during smoke haze episodes were higher than those in non-haze period, which indicated greater SOC contributions or more photo-oxidation of precursors in haze episodes with high ambient temperatures. However, the ratios of soil markers (Ca and Mg) during non-haze period were high implying that soil source contributed more to PM2.5 concentrations when there less BB occurred. The positive Matrix Factorization (PMF) model revealed that the source of BB, characterized by high K fractions, was the largest contributor during smoke haze episodes accounting for 50% (2017) and 79% (2019). Climate conditions influence meteorological patterns, particularly during incidences of extreme weather such as droughts, which affect the scale and frequency of open burning and thus air pollution levels.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.