Abstract

AbstractAtmospheric rivers (ARs) are increasingly recognized as a major driver of hydrological cycles, and are projected to increase around the world under a changing climate. However, the long‐term trends of ARs over East Asia (EA) remains less elucidated. Here we fill the gap by developing a longest‐ever archive of EA ARs, and examine its role in determining spatiotemporal precipitation variability over EA. We find contrasting changes in AR occurrences, with more frequent ARs in low latitudes but less in high latitudes during the period 1950–2020. The “dipole” pattern of decadal changes in AR occurrences is dictated by atmospheric dynamics (i.e., winds) in the north but thermodynamics (i.e., moisture) in the south. The reduced AR occurrences explain 49% of decreased annual precipitation in northern China, while more AR‐related precipitation is observed in southern China. Our results provide new insights into regional hydroclimate over EA by connecting it with large‐scale weather systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.