Abstract

Benthic microbial communities play a crucial role in maintaining the stability and function of estuarine ecosystems. However, their organization and response to multiple stresses in severely disturbed coastal areas remains to be elucidated. In this study, we revealed the presence of contrasting benthic bacterial and fungal communities in the Liaohe (LH) and Yalujiang (YLJ) estuaries, which are located at similar latitudes and are characterized by similar climates but are subjected to different levels of anthropogenic pressure. The results showed that Firmicutes and Chloroflexi were more abundant in LH, which reflected the influence of anthropogenic pressure in this area. Functional analyses indicated that the functional genes involved in the generation of precursor metabolites and energy pathways were more enriched in the LH community, while genes regulating degradation/utilization/assimilation processes were more enriched in the YLJ community. Distance-dependent similarity analysis showed that the bacterial community in LH was more affected by environmental changes, while that in YLJ was more influenced by geographic dispersion. In contrast, no significant distance-dependent similarity was found for the fungal communities in the two areas. In addition, the network analysis showed that the bacterial-fungal network in YLJ was more complex and stable than that in the LH. Our results highlight the important roles of environmental heterogeneity in controlling microbial community composition, biogeographic patterns, and co-occurrence networks. These findings fill knowledge gaps in the understanding of the different response patterns of benthic communities under varying anthropogenic pressures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call