Abstract

Several types of natural molecules interact specifically with ice crystals. Small antifreeze proteins (AFPs) adsorb to particular facets of ice crystals, thus inhibiting their growth, whereas larger ice-nucleating proteins (INPs) can trigger the formation of new ice crystals at temperatures much higher than the homogeneous ice nucleation temperature of pure water. It has been proposed that both types of proteins interact similarly with ice and that, in principle, they may be able to exhibit both functions. Here we investigated two naturally occurring antifreeze proteins, one from fish, type-III AFP, and one from beetles, TmAFP. We show that in addition to ice growth inhibition, both can also trigger ice nucleation above the homogeneous freezing temperature, providing unambiguous experimental proof for their contrasting behavior. Our analysis suggests that the predominant difference between AFPs and INPs is their molecular size, which is a very good predictor of their ice nucleation temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.