Abstract

Coral reefs are affected by the deterioration of the oceans due to global warming and other anthropogenic perturbations, increasing the frequency and severity of bleaching and disease. To overcome some of these conditions, reef corals and other cnidarians rely on a mucus layer housing a diverse community of beneficial microorganisms and mechanisms of innate immune response. The antimicrobial defense has been associated with the bacterial community in these organisms, but the potential antimicrobial activity of the mucus layer itself has not been explored fully. We hypothesized that the bacteria-free mucus layer of different cnidarians would show differential and specific antimicrobial and immunological responses when challenged with two potentially pathogenic bacteria. We evaluated this capability through antimicrobial properties, immune response and biochemical composition of the mucus. Results clearly showed that the mucus of healthy cnidarians has the capability of inhibiting the growth of Serratia marcescens and Aurantimonas sp. in a species-specific way that includes differences in the potency of the response. The anemone Exaiptasia pallida was particularly potent against Aurantimonas sp. while the coral Pseudodiploria strigosa and the medusa Cassiopea xamachana had similar capabilities against both bacterial strains. In coral affected by black band disease, this antibacterial capability diminished in the mucus layer, but the associated bacteria remained potent. Results showed that hydroxyproline and phenoloxidase increased in the transition zone of diseased corals, although melanin was not detected in any of the animals tested. Bleaching of anemones and medusas also diminished the antibacterial capability of the surface mucus layer, but in anemones, the associated bacteria did not show a significant reduction in their ability to inhibit the growth of the bacterial strains. The mucus of bleached medusas showed an increased inhibitory activity against Aurantimonas sp. that may be associated with a specific bacterial strain we isolated. Mucus collected from bleached anemones and medusas did not show a significant immune response. In this work, we show that the surface mucus layer itself has antibacterial properties not associated with the bacteria this layer houses; such properties diminished due to disease or bleaching, while immunological responses increased in the mucus of diseased animals.

Highlights

  • As many aquatic invertebrates, reef cnidarians possess a complex surface layer (SML) of mucopolysaccharides that functions as the interface between the animal tissue and the external environment, constituting a physicochemical and physiological barrier (Brown and Bythell, 2005; Wahl et al, 2012)

  • The mucus collected from healthy anemone E. pallida (Table 3) showed the highest inhibitory effect against both tester bacteria, except for mucus free of bacteria (SML) against S. marcescens, which showed no inhibitory effect on its growth

  • In mucus collected from bleached anemone, results were similar to healthy animals, except for a significantly higher inhibitory effect in the mucus complex (MC) against Aurantimonas sp

Read more

Summary

Introduction

Reef cnidarians possess a complex surface layer (SML) of mucopolysaccharides that functions as the interface between the animal tissue and the external environment, constituting a physicochemical and physiological barrier (Brown and Bythell, 2005; Wahl et al, 2012) This layer houses a microbial community mostly composed of bacteria, that varies depending on the animal species, geographic location, physiological status, nutrition, and health (Rohwer et al, 2002; Ainsworth et al, 2006; Koren and Rosenberg, 2006; Longford et al, 2007; Wahl et al, 2012; Thompson et al, 2015). Microbes in the SML alter the immune system by stimulating specific responses, and the immune system influences the microbial composition in return (Wahl et al, 2012; Shöder and Bosch, 2016)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.