Abstract

ABSTRACTAim  The proportion of alien plant species in floras is increasingly being used to indicate the threat of invasions to native species and/or the homogenization of biodiversity. However, this indicator is only valuable if it is independent of the spatial extent and grain of observation. This study tested the equivalence of native and alien species–area relationships (SARs) in order to assess the support for scale invariance in the proportion of alien species in floras.Location  England, UK.Methods  Nested SARs were generated by assessing the richness of native and alien plant species drawn from the New atlas of the British and Irish flora for six areas comprising 100, 400, 900, 1600, 2500 and 3600 km2 with each larger area containing all smaller areas. Five replicate sets of nested areas encompassing northern, southern, eastern, western and central regions were chosen. For each set of nested areas, the log‐transformed species richness was regressed on log‐transformed area to fit a power function to the SAR.Results  Native and alien plant SARs reveal consistent differences in slope, highlighting that the proportion of alien species is a function of spatial grain. Aliens are more rare than natives and have higher spatial turnover leading to faster accumulation of species as area increases. However, equivalent samples drawn from a larger spatial extent reveal similar alien and native SARs.Main conclusions  The significant differential scale dependence in native and alien species richness observed in this study reflects dissimilar influences of regional drivers such as habitat, but potentially also propagule pressure and introduction history, that leads to the relative rarity and high spatial turnover of alien species. Maps of invasion hotspots that identify areas where the proportion of the alien flora is particularly high should therefore be treated with considerable caution since patterns across most grains used for species monitoring will be scale dependent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call