Abstract

BACKGROUND. Sequences with noncartesian k-space sampling may improve image quality of head and neck MRI. OBJECTIVE. The purpose of this study was to compare intraindividually the image quality of a spiral gradient-recalled echo (GRE) sequence and conventional cartesian GRE and cartesian turbo spin-echo (TSE) sequences for contrast-enhanced T1-weighted head and neck MRI. METHODS. This prospective study included patients referred for contrast-enhanced head and neck MRI from August 2020 to May 2021. Patients underwent 1.5-T MRI including contrast-enhanced spiral GRE (2 minutes 28 seconds), cartesian GRE (4 minutes 27 seconds), and cartesian TSE (3 minutes 41 seconds) sequences, acquired in rotating order across patients. Three radiologists independently assessed image quality measures, including conspicuity of prespecified lesions, using 5-point Likert scales. One reader measured maximal extent of dental material artifact and contrast-to-noise ratio (CNR). RESULTS. Thirty-one patients (13 men, 18 women; mean age, 63.8 years) were enrolled. Nineteen patients had a focal lesion; 22 had dental material. Interreader agreement for image quality measures was substantial to excellent (Krippendorff alpha, 0.681-1.000). Scores for overall image quality (whole head and neck, neck only, and head only), pulsation artifact, muscular contour delineation, vessel contour delineation, motion artifact, and differentiation between mucosa and pharyngeal muscles were significantly better for spiral GRE than for cartesian GRE and cartesian TSE for all readers (p < .05). Scores for lesion conspicuity (whole head and neck, neck only, and head only), quality of fat suppression, flow artifact, and foldover artifact were not significantly different between spiral GRE and the cartesian sequences for any reader (p > .05). Dental material artifact scores were significantly worse for spiral GRE than the other sequences for all readers (p < .05). The mean maximum extent of dental material artifact was 39.6 ± 25.5 (SD) mm for spiral GRE, 35.6 ± 24.3 mm for cartesian GRE, and 29.6 ± 21.4 mm for cartesian TSE; the mean CNR was 221.1 ± 94.5 for spiral GRE, 151.8 ± 85.7 for cartesian GRE, and 153.0 ± 63.2 for cartesian TSE (p < .001 between spiral GRE and other sequences for both measures). CONCLUSION. Three-dimensional spiral GRE improves subjective image quality and CNR of head and neck MRI with shorter scan time versus cartesian sequences, though it exhibits larger dental material artifact. CLINICAL IMPACT. A spiral sequence may help overcome certain challenges of conventional cartesian sequences for head and neck MRI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call