Abstract
BackgroundPreoperative prediction of International Federation of Gynecology and Obstetrics (FIGO) stage in patients with epithelial ovarian cancer (EOC) is crucial for determining appropriate treatment strategy. This study aimed to explore the value of contrast-enhanced CT (CECT) radiomics in predicting preoperative FIGO staging of EOC, and to validate the stability of the model through an independent external dataset.MethodsA total of 201 EOC patients from three centers, divided into a training cohort (n = 106), internal (n = 46) and external (n = 49) validation cohorts. The least absolute shrinkage and selection operator (LASSO) regression algorithm was used for screening radiomics features. Five machine learning algorithms, namely logistic regression, support vector machine, random forest, light gradient boosting machine (LightGBM), and decision tree, were utilized in developing the radiomics model. The optimal performing algorithm was selected to establish the radiomics model, clinical model, and the combined model. The diagnostic performances of the models were evaluated through receiver operating characteristic analysis, and the comparison of the area under curves (AUCs) were conducted using the Delong test or F-test.ResultsSeven optimal radiomics features were retained by the LASSO algorithm. The five radiomics models demonstrate that the LightGBM model exhibits notable prediction efficiency and robustness, as evidenced by AUCs of 0.83 in the training cohort, 0.80 in the internal validation cohort, and 0.68 in the external validation cohort. The multivariate logistic regression analysis indicated that carcinoma antigen 125 and tumor location were identified as independent predictors for the FIGO staging of EOC. The combined model exhibited best diagnostic efficiency, with AUCs of 0.95 in the training cohort, 0.83 in the internal validation cohort, and 0.79 in the external validation cohort. The F-test indicated that the combined model exhibited a significantly superior AUC value compared to the radiomics model in the training cohort (P < 0.001).ConclusionsThe combined model integrating clinical characteristics and radiomics features shows potential as a non-invasive adjunctive diagnostic modality for preoperative evaluation of the FIGO staging status of EOC, thereby facilitating clinical decision-making and enhancing patient outcomes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.