Abstract

AbstractWe report continuous observations in the high Arctic (north of 84°N) over the full 2013 summer season at two nearby sites with distinct initial snow depth, ice thickness, and altitude with respect to the local ice topography. The two sites, subject to similar atmospheric conditions that did not favor strong ice melt, showed contrasting evolutions. One site, with initially thin sea ice (1.40 m) at a relatively low location of the floe, witnessed the formation of a spectacular 1.20‐m‐deep melt pond, a pond‐enhanced erosion of the ice surface, and a sudden pond drainage into the ocean. Then, the outpoured fresh water rapidly froze, heated the old ice from below, and also acted as a temporary shield from the ocean heat flux while it was progressively ablated through dissolution. Eventually, the site almost recovered its initial ice thickness. In contrast, the other site, with initially thicker sea ice (1.75 m) at a relatively high location on its floe, did not support any significant meltwater and underwent over 0.5 m of continuous basal ablation. The two sites experienced formation of superimposed and interposed ice. Sea ice survived summer melt at the two sites, which entered the refreezing season with similar snow and ice thicknesses. For the first time, processes associated with the formation of a deep melt pond and subsequent false bottom evolution are continuously documented with ice mass balance instruments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.