Abstract

We report on a new contrast-transfer-function (CTF) phase-retrieval method based on the alternating direction method of multipliers (ADMMs), which allows us to exploit any compressed sensing regularization scheme reflecting the sparsity of the investigated object. The proposed iterative algorithm retrieves accurate phase maps from highly noisy single-distance projection microscopy data and is characterized by a stable convergence, not bounded to the prior knowledge of the object support or to the initialization strategy. Experiments on simulated and real datasets show that ADMM-CTF yields reconstructions with a substantial lower amount of artifacts and enhanced signal-to-noise ratio compared to the standard analytical inversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call