Abstract
Multidimensional psychometric functions can typically be estimated nonparametrically for greater accuracy or parametrically for greater efficiency. By recasting the estimation problem from regression to classification, however, powerful machine learning tools can be leveraged to provide an adjustable balance between accuracy and efficiency. Contrast sensitivity functions (CSFs) are behaviorally estimated curves that provide insight into both peripheral and central visual function. Because estimation can be impractically long, current clinical workflows must make compromises such as limited sampling across spatial frequency or strong assumptions on CSF shape. This article describes the development of the machine learning contrast response function (MLCRF) estimator, which quantifies the expected probability of success in performing a contrast detection or discrimination task. A machine learning CSF can then be derived from the MLCRF. Using simulated eyes created from canonical CSF curves and actual human contrast response data, the accuracy and efficiency of the machine learning contrast sensitivity function (MLCSF) was evaluated to determine its potential utility for research and clinical applications. With stimuli selected randomly, the MLCSF estimator converged slowly toward ground truth. With optimal stimulus selection via Bayesian active learning, convergence was nearly an order of magnitude faster, requiring only tens of stimuli to achieve reasonable estimates. Inclusion of an informative prior provided no consistent advantage to the estimator as configured. MLCSF achieved efficiencies on par with quickCSF, a conventional parametric estimator, but with systematically higher accuracy. Because MLCSF design allows accuracy to be traded off against efficiency, it should be explored further to uncover its full potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.