Abstract

Hepatocellular carcinoma (HCC) has become the 4th leading cause of cancer-related deaths, with high social, economical and health implications. Imaging techniques such as multiphase computed tomography (CT) have been successfully used for diagnosis of liver tumors such as HCC in a feasible and accurate way and its interpretation relies mainly on comparing the appearance of the lesions in the different contrast phases of the exam. Recently, some researchers have been dedicated to the development of tools based on machine learning (ML) algorithms, especially by deep learning techniques, to improve the diagnosis of liver lesions in imaging exams. However, the lack of standardization in the naming of the CT contrast phases in the DICOM metadata is a problem for real-life deployment of machine learning tools. Therefore, it is important to correctly identify the exam phase based only on the image and not on the exam metadata, which is unreliable. Motivated by this problem, we successfully created an annotation platform and implemented a convolutional neural network (CNN) to automatically identify the CT scan phases in the HCFMUSP database in the city of São Paulo, Brazil. We improved this algorithm with hyperparameter tuning and evaluated it with cross validation methods. Comparing its predictions with the radiologists annotation, it achieved an accuracy of 94.6%, 98% and 100% in the testing dataset for the slice, volume and exam evaluation, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.