Abstract

Lipophilic taxanes can be dissolved in contrast media at significantly higher concentration than in saline. As contrast media have occasionally been observed to delineate the contour of coronary arteries for some seconds they may serve as a matrix for an antiproliferative drug aimed at preventing restenosis. The aim of this study was to test a novel taxane-contrast agent formulation for this new approach in the setting of coronary stenting. In cell culture experiments (bovine vascular smooth muscle cells), 60-min incubation with contrast agent-taxane formulations (iopromide-paclitaxel, iopromide-protaxel) induced a significant, concentration-dependent inhibition of vascular smooth muscle cell (VSMC) proliferation over 12 days. Shorter incubation times of 10 and 3 min showed the same efficacy. For in vivo investigation, 16 stents were implanted into the coronary arteries of eight pigs using a 1.3 to 1 overstretch ratio. A control group received iopromide 370 alone while the treatment group was injected with a iopromide-protaxel formulation at a dose of 74 micromol/l, which is far below protaxel levels inducing systemic toxicity. Quantitative angiography and histomorphometry of the stented arteries asserted statistic equality of the baseline parameters between the control and treatment groups. After 28 days, the treatment group showed a marked reduction of the parameters characterizing in-stent restenosis, especially a 34% reduction of the neointimal area. First evidence is provided that using a contrast agent as solvent for a taxane constitutes a new drug delivery mechanism able to inhibit in-stent restenosis in the porcine restenosis model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call