Abstract

Histogram equalization is widely used for contrast enhancement in a variety of applications due to its simple function and effectiveness. Examples include medical image processing and radar signal processing. One drawback of the histogram equalization can be found on the fact that the brightness of an image can be changed after the histogram equalization, which is mainly due to the flattening property of the histogram equalization. Thus, it is rarely utilized in consumer electronic products such as TV where preserving the original input brightness may be necessary in order not to introduce unnecessary visual deterioration. This paper proposes a novel extension of histogram equalization to overcome such a drawback of histogram equalization. The essence of the proposed algorithm is to utilize independent histogram equalizations separately over two subimages obtained by decomposing the input image based on its mean with a constraint that the resulting equalized subimages are bounded by each other around the input mean. It is shown mathematically that the proposed algorithm preserves the mean brightness of a given image significantly well compared to typical histogram equalization while enhancing the contrast and, thus, provides a natural enhancement that can be utilized in consumer electronic products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.