Abstract

We propose a biologically inspired signal processing model capable of enhancing the discrimination of multivariate patterns from gas sensor arrays. The model captures two functions in the early olfactory pathway: chemotopic convergence of sensory neurons onto the olfactory bulb, and center on–off surround lateral interactions. Sensor features are first topologically projected onto a two-dimensional lattice according to their selectivity profile, leading to odor-specific spatial patterning. The resulting patterns serve as inputs to a network of mitral cells with center on–off surround lateral inhibition, which enhances the initial contrast among odors and decouples odor identity from intensity. The model is validated using experimental data from an array of temperature-modulated metal-oxide sensors. Our results indicate that the model is able to improve the separability between odor patterns that is available at the inputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.