Abstract

Accurate prediction of treatment response to transarterial chemoembolization (TACE) in patients with hepatocellular carcinoma (HCC) is critical for precision treatment. This study aimed to develop a comprehensive model (DLRC) that incorporates contrast-enhanced computed tomography (CECT) images and clinical factors to predict the response to TACE in patients with HCC. A total of 399 patients with intermediate-stage HCC were included in this retrospective study. Deep learning and radiomic signatures were established based on arterial phase CECT images, Correlation analysis and the least absolute shrinkage and selection (LASSO) regression analysis were applied for features selection. The DLRC model incorporating deep learning radiomic signatures and clinical factors was developed using multivariate logistic regression. The area under the receiver operating characteristic curve (AUC), calibration curve and decision curve analysis (DCA) were used to evaluate the performance of the models. Kaplan-Meier survival curves based on the DLRC were plotted to assess overall survival in the follow-up cohort (n=261). The DLRC model was developed using 19 quantitative radiomic features, 10 deep learning features, and 3 clinical factors. The AUC of the DLRC model was 0.937 (95% confidence interval [CI], 0.912-0.962) and 0.909 (95% CI, 0.850-0.968) in the training and validation cohorts, respectively, outperforming models established with two signatures or a single signature (p < 0.05). Stratified analysis showed that the DLRC was not statistically different between subgroups (p > 0.05), and the DCA confirmed the greater net clinical benefit. In addition, multivariable cox regression revealed that DLRC model outputs were independent risk factors for the overall survival (hazard ratios: 1.20, 95% CI: 1.03-1.40; p=0.019). The DLRC model exhibited a remarkable accuracy in predicting response to TACE, and it can be utilized as a potent tool for precision treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call