Abstract

Observer sensitivity to oscillatory step displacements of sine-wave gratings was investigated at various loci in the visual field (0-30 degrees) as a function of contrast. Detection thresholds at 10 Hz and high grating contrasts were approximately 11-15 arcsec in the fovea and 37-47 arcsec at 30 degrees eccentricity. At any given contrast, threshold displacement increases linearly with eccentricity. The data provide evidence against an interpretation based on cortical magnification, because the slope and the scale-free x intercept of the eccentricity function vary strongly with contrast. While foveal thresholds for high-contrast gratings are in the range of the hyperacuities, the oscillatory motion threshold falls off an order of magnitude more slowly than the traditional hyperacuities. Rather than conceiving of the oscillatory motion threshold as a spatial acuity limited by cortical magnification, we suggest an alternative approach that is based on a form of contrast discrimination. Oscillatory motion can be decomposed into the sum of a modulating counterphase grating and a static masking grating, both of which are in spatial quadrature (i.e., 90 degrees out of phase). At low grating contrast, oscillatory motion can be detected when the counterphase component exceeds a constant contrast value. Above a critical contrast value of the static component Cscrit, threshold rises as a power function of contrast with a slope near 1.0. The critical contrast value Cscrit increases linearly with eccentricity, indicating that oscillating gratings observed with the peripheral visual field are less easily masked compared with foveally fixated gratings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call