Abstract
To identify and interact with moving objects, including other members of the same species, an animal's nervous system must correctly interpret patterns of contrast in the physical signals (such as light or sound) that it receives from the environment. In weakly electric fish, the motion of objects in the environment and social interactions with other fish create complex patterns of contrast in the electric fields that they produce and detect. These contrast patterns can extend widely over space and time and represent a multitude of relevant features, as is also true for other sensory systems. Mounting evidence suggests that the computational principles underlying contrast coding in electrosensory neural networks are conserved elements of spatiotemporal processing that show strong parallels with the vertebrate visual system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.