Abstract

Abstract For four wide classes of topological rings R \mathfrak{R} , we show that all flat left R \mathfrak{R} -contramodules have projective covers if and only if all flat left R \mathfrak{R} -contramodules are projective if and only if all left R \mathfrak{R} -contramodules have projective covers if and only if all descending chains of cyclic discrete right R \mathfrak{R} -modules terminate if and only if all the discrete quotient rings of R \mathfrak{R} are left perfect. Three classes of topological rings for which this holds are the complete, separated topological associative rings with a base of neighborhoods of zero formed by open two-sided ideals such that either the ring is commutative, or it has a countable base of neighborhoods of zero, or it has only a finite number of semisimple discrete quotient rings. The fourth class consists of all the topological rings with a base of neighborhoods of zero formed by open right ideals which have a closed two-sided ideal with certain properties such that the quotient ring is a topological product of rings from the previous three classes. The key technique on which the proofs are based is the contramodule Nakayama lemma for topologically T-nilpotent ideals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call