Abstract

In order to study the characteristic of contraluminal transport of hydrophylic small fatty acids the in situ stopped flow microperfusion technique [12] has been applied. By measuring with 4 s contact time the decrease in the contraluminal concentration of the respective radiolabelled substances the concentration dependence of the influx into the cortical cells was tested. The 4 s decrease in contraluminal concentration of chloroacetate, L-lactate, D-lactate, 3-hydroxybutyrate and acetoacetate was between 26% and 31%. For each substance the percent decrease was the same, no matter whether it was offered in a concentration of 0.1 or 10 mmol/l. Contraluminal disappearance of 0.1 mmol/l L-lactate was not influenced by 5 mmol/l H2DIDS, probenecid, phloretin, mersalyl or cyanocinnamate, but it was significantly (37%) inhibited by 5-nitro-2-(phenyl-propyl-amino) benzoate, a blocker of the nonspecific anion channel. The percent decrease in propionate uptake was somewhat larger - between 36% and 39% - but again not different at 0.01, 0.1, 1.0 and 10 mmol/l. With pyruvate the contraluminal decrease was 20% at 0.1 mmol/l and 31% at 10 mmol/l. The percent disappearance of the aromatic pyrazinoate was 38% and 34% at 0.1 and 10 mmol/l and for nicotinate 42% and 22%, respectively. The disappearance of nicotinate (0.1 mmol/l) was significantly inhibited by 10 mmol/l pyrazinoate and paraaminohippurate (PAH). The data are in agreement with the hypothesis that the hydrophilic small fatty acids traverse the contraluminal cell side by simple diffusion, possibly via the unspecific anion channel [14], pyruvate via the dicarboxylic acid pathway in a cooperative manner and pyrazinoate, as well as nicotinate, via the PAH pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.