Abstract

The auditory efferent system plays presumed roles in enhancing signals in noise, maintaining the cochlea for optimal acoustic signal processing, and may have a protective role in preserving auditory function in the face of ototoxic events. The objective of the study was to measure age-related changes of the medial olivocochlear efferent system in mice by comparing distortion-product otoacoustic emissions generated with and without contralateral white noise stimulation. Consistent with prior work, distortion-product otoacoustic emissions were typically reduced in magnitude when white noise was presented to the contralateral ear. This contralateral suppression is attributed to activation of the medial olivocochlear efferent system, which has an inhibitory effect on the cochlear hair cell system. By studying contralateral suppression on cochlear output in subjects of different ages, it is possible to describe aging effects on the medial olivocochlear system. CBA mice were divided into three age groups: young adult, middle-aged, and old-aged animals (21, 13, and 22 animals per group, respectively), and auditory brainstem responses were obtained before distortion-product otoacoustic emission testing to assess overall hearing abilities. 2f1-f2 distortion-product otoacoustic emission recordings were obtained from individual subjects (anesthetized with ketamine/xylazine) in each age group under two conditions: 1) in quiet and 2) in the presence of a contralaterally applied wideband noise. Principal findings were that distortion-product otoacoustic emission levels decreased with age for mice in a way similar to humans, when correcting for the absolute difference in life spans. In addition, contralateral suppression declined in middle-aged and old-aged groups relative to the young adults for mice in a manner similar to humans. The contralateral suppression decline at low frequencies preceded that of the decline in distortion-product otoacoustic emissions with age. Functional decline of the medial olivocochlear efferent system with age precedes outer hair cell degeneration. Loss of medial olivocochlear suppressive function may play a role in the development of presbycusis in both clinical cases and animal models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.