Abstract

BackgroundThis study specifically focused on anatomical MRI characterization of the low shear stress-induced atherosclerotic plaque in mice. We used machine learning algorithms to analyze multiple correlation factors of plaque to generate predictive models and to find the predictive factor for vulnerable plaque.MethodsBranches of the left carotid artery in apoE−/− and C57BL/6J mice were ligated to produce the partial left carotid artery model. Before surgery, and 7, 14, and 28 days after surgery, in vivo serial MRI measurements of carotid artery diameter were obtained. Meanwhile, proximal blood flow was evaluated. After image acquisition and animal sacrifice, carotid arteries were harvested for histological analysis. Support vector machine (SVM) and decision tree (DT) were used to select features and generate predictive models of vulnerable plaque progression.ResultSeven days after surgery, neointima formation was visualized on micro-MRI in both apoE−/− and C57BL/6J mice. Ultrasonography showed that blood flow had significantly decreased compared to that in the contralateral artery. Partial ligation of the carotid artery for 4 weeks in apoE−/− mice induced vulnerable plaque; however, in C57BL/6J mice this same technique performed for 4 weeks induced arterial stenosis. Contralateral carotid artery diameter at 7 days after surgery was the most reliable predictive factor in plaque progression. We achieved over 87.5% accuracy, 80% sensitivity, and 95% specificity with SVM. The accuracy, sensitivity, and specificity for the DT classifier were 90, 90, and 90%, respectively.ConclusionsThis study is the first to demonstrate that SVM and DT methods could be suitable models for identifying vulnerable plaque progression in mice. And contralateral artery enlargement can predict the vulnerable plaque in carotid artery at the very early stage. It may be a valuable tool which helps to optimize the clinical work flow process by providing more decision in selecting patients for treatment.

Highlights

  • This study focused on anatomical magnetic resonance imaging (MRI) characterization of the low shear stress-induced atherosclerotic plaque in mice

  • This study is the first to demonstrate that Support vector machine (SVM) and decision tree (DT) methods could be suitable models for identifying vulnerable plaque progression in mice

  • We focused on establishing a predictive model to evaluate vulnerable atherosclerotic plaque formation and progress

Read more

Summary

Introduction

This study focused on anatomical MRI characterization of the low shear stress-induced atherosclerotic plaque in mice. Atherosclerosis, a complex multifactorial disease, is the leading cause of death worldwide. It is characterized as patchy intimal plaques that encroach on the lumen of medium-sized and large arteries; the plaques comprise lipids, inflammatory cells, smooth muscle cells, and collagen matrix [1]. Extensive evidence indicates that blood flow-induced shear stress plays a critical role in atherogenesis in humans and animals [3, 4]. Researchers have found that low and oscillatory endothelial shear stress-induced atherosclerotic lesions form at specific arterial regions [6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.