Abstract

The mammalian efferent medial olivocochlear system modulates active amplification of low-level sounds in the cochlea. Changes of the cochlear amplifier can be monitored by distortion product otoacoustic emissions (DPOAEs). The quadratic distortion product f2-f1 is known to be sensitive to changes in the operating point of the amplifier transfer function. We investigated the effect of contralateral acoustic stimulation (CAS), known to elicit efferent activity, on DPOAEs in the gerbil. During CAS, a significant increase of the f2-f1 level occurred already at low contralateral noise levels (20 dB SPL), whereas 2f1-f2 was much less affected. The effect strength depended on the CAS level and as shown in experiments with pure tones on the frequency of the contralateral stimulus. In a second approach, we biased the position of the cochlear partition and thus the cochlear amplifier operating point periodically by a ipsilateral low-frequency tone, which resulted in a phase-related amplitude modulation of f2-f1. This modulation pattern was changed considerably during contralateral noise stimulation, in dependence on the noise level. The experimental results were in good agreement with a simple model of distortion product generation and suggest that the olivocochlear efferents might change the operating state of cochlear amplification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.