Abstract
We investigate contractivity properties of explicit linear multistep methods in the numerical solution of ordinary differential equations. The emphasis is on the general test-equation $$\frac{d}{{dt}}U(t) = AU(t)$$ , whereA is a square matrix of arbitrary orders?1. The contractivity is analysed with respect to arbitrary norms in thes-dimensional space (which are not necessarily generated by an inner product). For given order and stepnumber we construct optimal multistep methods allowing the use of a maximal stepsize.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.