Abstract

This paper deals with the synthesis and experimental performance evaluation of a contractivity-based nonlinear dynamic motion control scheme for a Laser-Beam Steering (LBS) system, which includes a saturated integral action and a variable gain. The variable gain, in the control law, is used to discriminate between “signal” and “noise” in the velocity measurements, allowing to do a trade-off between the low-frequency tracking and disturbance rejection properties and high-frequency measurement noise amplification, an effect known as waterbed effect. Then, the contractivity-based framework handles the stabilization problem together with the closed-loop performance, allowing one to generalize key properties of linear control systems to analyze transient and steady-state solutions performances in the nonlinear case. The proposed control scheme is evaluated on an experimental platform for the set-point regulation and trajectory tracking problems under different scenarios. Moreover, the effectiveness of the proposed control scheme is compared with linear controllers for the LBS system available in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call