Abstract

Dependence of left ventricular (LV) relaxation on cardiac systolic load is a function of myocardial contractility. The authors hypothesized that, if a tight coupling would exist between LV contraction and relaxation, the changes in relaxation rate with an increase in cardiac systolic load would be related to the changes in LV contraction. Coronary surgery patients (n = 120) with preoperative ejection fraction >40% were included. High-fidelity LV pressure tracings (n = 120) and transgastric transesophageal echocardiographic data (n = 40) were obtained. Hearts were paced at a fixed rate of 90 beats/min. Effects on contraction were evaluated by analysis of changes in dP/dt(max) and stroke area. Effects on relaxation were assessed by analysis of R (slope of the relation between tau and end-systolic pressure). Correlations were calculated with linear regression analysis using Pearson's coefficient r. Baseline LV end-diastolic pressure was 10+/-3 mm Hg (mean +/- SD). During leg raising, systolic LV pressure increased from 93+/-9 to 107+/-11 mm Hg. The change in dP/dt(max) was variable and ranged from -181 to +254 mm Hg/s. A similar variability was observed with the changes in stroke area, which ranged from -2.0 to +5.5 cm2. Changes in dP/dt(max) and in stroke area were closely related to individual R values (r = 0.87, P<0.001; and r = 0.81, P<0.001, respectively) and to corresponding changes in LV end-diastolic pressure (r = 0.81, P< 0.001; and r = 0.74, P<0.001, respectively). A tight coupling was observed between contraction and relaxation. Leg raising identified patients who developed a load-dependent impairment of LV performance and increased load dependence of LV relaxation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call