Abstract

A new non-singular analytical theory for the contraction of near-Earth satellite orbits under the influence of air drag is developed in terms of uniformly regular Kustaanheimo and Stiefel (KS) canonical elements using an oblate atmosphere with variation of density scale height with altitude. The series expansions include up to fourth power in terms of eccentricity and c (a small parameter dependent on the flattening of the atmosphere). Only two of the nine equations are solved analytically to compute the state vector and change in energy at the end of each revolution, due to symmetry in the equations of motion. It is observed that the analytically computed values of the semi-major axis and eccentricity are consistent with the numerically integrated values up to 500 revolutions over a wide range of the drag-perturbed orbital parameters. The theory can be effectively used for re-entry of near-Earth objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.