Abstract

Force generation in non-muscle cells is vital for many cellular and tissue functions. Force-generating mechanisms include actomyosin-mediated contraction, actin polymerization that drives plasma membrane protrusions and filopodia as well as kinesin- and dynein-controlled transport of vesicles and organelles along the microtubule cytoskeleton. The actomyosin-mediated contractility and actin remodeling in both epithelium and endothelium were shown to have significant impact on cell migration, shape change and formation and control of intercellular junctions. In endothelium, contraction is supposed to control permeability for fluid and solutes. However, recent studies demonstrated the constitutive appearance of junction-associated intermittent lamellipodia (JAIL) that drive vascular endothelial cadherin (VE-cadherin) dynamics and control endothelial permeability. Since thrombin blocks JAIL formation and thus increases endothelial permeability, the concept of a simple Rho GTPase-controlled contraction, which is supposed to open endothelial junctions, becomes challenged. Furthermore, specific tyrosine phosphorylation sites of VE-cadherin and catenins have been shown to be involved in control of VE-cadherin-mediated cell adhesion. How the causal-mechanistic interdependency between contractility, VE-cadherin and catenin phosphorylation and JAIL-mediated dynamic remodeling of VE-cadherin is regulated is still an open question and needs to be further addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.