Abstract

We study incremental stability and convergence of switched (bimodal) Filippov systems via contraction analysis. In particular, by using results on regularization of switched dynamical systems, we derive sufficient conditions for convergence of any two trajectories of the Filippov system between each other within some region of interest. We then apply these conditions to the study of different classes of Filippov systems including piecewise smooth (PWS) systems, piecewise affine (PWA) systems and relay feedback systems. We show that contrary to previous approaches, our conditions allow the system to be studied in metrics other than the Euclidean norm. The theoretical results are illustrated by numerical simulations on a set of representative examples that confirm their effectiveness and ease of application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.