Abstract

The effects of 19 days of hypergravity (HG) were investigated on the biochemical and physiological properties of the slow soleus muscle and its fast agonist, the plantaris. HG was induced by rotational centrifugation that led to a 2-G gravity level. The HG rats were characterized by a slower body growth than control, whereas the soleus muscle mass was increased by 15%. Using electrophoretic techniques, we showed that the distribution of myosin heavy chain and troponin T isoforms was not modified after HG in both soleus and plantaris. In contrast, the isoform expression pattern of two troponin subunits, troponin I and troponin C, was changed in a slow-to-fast manner only in the soleus. From tension-pCa relationships, changes in Ca(2+) activation threshold by 0.18 pCa unit indicated a decrease in Ca(2+) sensitivity and an increase in the slope of the curve, attesting to a higher cooperativity along the thin filament after HG. Comparison of our HG data with previous results in microgravity conditions indicated that muscle characteristics, except muscle mass, did not evolve linearly from 0 to 2 G.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.