Abstract

The sound-producing muscles of frogs and toads are interesting because they have been selected to produce high-power outputs at high frequencies. The two North American species of gray tree frog, Hyla chrysoscelis and Hyla versicolor, are a diploid-tetraploid species pair. They are morphologically identical, but differ in the structure of their advertisement calls. H. chrysoscelis produces very loud pulsed calls by contracting its calling muscles at approximately 40 Hz at 20 degrees C, whereas, H. versicolor operates the homologous muscles at approximately 20 Hz at this temperature. This study examined the matching of the intrinsic contractile properties of the calling muscles to their frequency of use. I measured the isotonic and isometric contractile properties of two calling muscles, the laryngeal dilator, which presumably has a role in modulating call structure, and the external oblique, which is one of the muscles that provides the mechanical power for calling. I also examined the properties of the sartorius as a representative locomotor muscle. The calling muscles differ greatly in twitch kinetics between the two species. The calling muscles of H. chrysoscelis reach peak tension in a twitch after approximately 15 ms, compared with 25 ms for the same muscles in H. versicolor. The muscles also differ significantly in isotonic properties in the direction predicted from their calling frequencies. However, the maximum shortening velocities of the calling muscles of H. versicolor are only slightly lower than those of the comparable muscles of H. chrysoscelis. The calling muscles have similar maximum shortening velocities to the sartorius, but have much flatter force-velocity curves, which may be an adaptation to their role in cyclical power output. I conclude that twitch properties have been modified more by selection than have intrinsic shortening velocities. This difference corresponds to the differing roles of shortening velocity and twitch kinetics in determining power output at differing frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call