Abstract

Background:Transplantation of pluripotent stem cell–derived cardiomyocytes represents a promising therapeutic strategy for cardiac regeneration, and the first clinical studies in patients with heart failure have commenced. Yet, little is known about the mechanism of action underlying graft-induced benefits. Here, we explored whether transplanted cardiomyocytes actively contribute to heart function.Methods:We injected cardiomyocytes with an optogenetic off-on switch in a guinea pig cardiac injury model.Results:Light-induced inhibition of engrafted cardiomyocyte contractility resulted in a rapid decrease of left ventricular function in ≈50% (7/13) animals that was fully reversible with the offset of photostimulation.Conclusions:Our optogenetic approach demonstrates that transplanted cardiomyocytes can actively participate in heart function, supporting the hypothesis that the delivery of new force-generating myocardium can serve as a regenerative therapeutic strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call