Abstract

Engineered heart tissue (EHT) is being developed for clinical implantation in heart failure or congenital heart disease and therefore requires a comprehensive functional characterization and scale-up of EHT. Here we explored the effects of scale-up of self-organizing EHT and present detailed electrophysiologic and contractile functional characterization. Fibers from EHT were generated from self-organizing neonatal rat cardiac cells (0.5×10(6) to 3×10(6)/fiber) on fibrin. We characterized contractile patterns and measured contractile function using a force transducer, and assessed force-length relationship, maximal force generation, and rate of force generation. Action potential and conduction velocity of EHT were measured with optical mapping, and transcript levels of myosin heavy chain beta were measured by reverse transcriptase-polymerase chain reaction. Increasing the cell number per construct resulted in an increase in fiber volume. The force-length relationship was negatively impacted by increasing cell number. Maximal force generation and rate of force generation were also abrogated with increasing cell number. This decrease was not likely attributable to a selective expansion of noncontractile cells as myosin heavy chain beta levels were stable. Irregular contractile behavior was more prevalent in constructs with more cells. Engineered heart tissue (1×10(6)/construct) had an action potential duration of 140.2 milliseconds and a conduction velocity of 23.2 cm/s. Engineered heart tissue displays physiologically relevant features shared with native myocardium. Engineered heart tissue scale-up by increasing cell number abrogates contractile function, possibly as a result of suboptimal cardiomyocyte performance in the absence of vasculature. Finally, conduction velocity approaches that of native myocardium without any electrical or mechanical conditioning, suggesting that the self-organizing method may be superior to other rigid scaffold-based EHT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.