Abstract

Gabai showed that the Whitehead manifold is the union of two submanifolds each of which is homeomorphic to R 3 \mathbb R^3 and whose intersection is again homeomorphic to R 3 \mathbb R^3 . Using a family of generalizations of the Whitehead Link, we show that there are uncountably many contractible 3-manifolds with this double 3-space property. Using a separate family of generalizations of the Whitehead Link and using an extension of interlacing theory, we also show that there are uncountably many contractible 3-manifolds that fail to have this property.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.