Abstract
Using the technique of space theory and set-valued analysis, we establish contractibility results for efficient point sets in a locally convex space and a path connectedness result for a positive proper efficient point set in a reflexive space. We also prove a connectedness result for a positive proper efficient point set in a locally convex space; as an application, we give a connectedness result for an efficient solution set in a locally convex space.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.