Abstract

Dynamic steady-state growth in 3D of a semi-infinite plane brittle crack in isotropic elastic solids is considered. Loads cause growth by translating on the crack surfaces at constant, subcritical speed. An analytical solution is obtained and subjected to a criterion for brittle crack growth based on dynamic energy release rate, with kinetic energy included. The result is a nonlinear differential equation for the crack contour, i.e., the curve formed by the crack edge in the crack plane. The equation is studied for the case of compression loading by translating point forces. At large distances from the forces, the crack edge asymptotically approaches the rectilinear and kinetic energy effects can be negligible. A bulge forms around the forces, however, the effect of kinetic energy on its size can be pronounced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call