Abstract
This paper presents a novel face recognition method based on the contourlet for facial features representation and using an new kernel based algorithm, for discriminating purposes, namely kernel relevance weighted discriminant analysis (KRWDA). This nonlinear reduction dimension algorithm has several interesting characteristics. First, using kernel theory, it handles nonlinearity efficiently. Second, by incorporating a weighting function into discriminant criterion, it overcomes overemphasis on well-separated classes and hence can work under more realistic situations. Finally, it can effectively deal with the small sample size problem by using a QR decomposition on the scatter matrices. We have performed multiple face recognition experiments to compare the proposed method with other dimensionality reduction methods showing its good performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.