Abstract

This paper describes a new algorithm for contouring a medial surface from CT (computed tomography) data of a thin-plate structure. Thin-plate structures are common in mechanical structures, such as car body shells. When designing thin-plate structures in CAD (computer-aided design) and CAE (computer-aided engineering) systems, their shapes are usually represented as surface models associated with their thickness values. In this research, we are aiming at extracting medial surface models of thin-plate structures from their CT data for use in CAD and CAE systems. Commonly used isosurfacing methods, such as marching cubes, are not applicable to contour the medial surface. Therefore, we first extract medial cells (cubes comprising eight neighboring voxels) from the CT data using a skeletonization method to apply the marching cubes algorithm for extracting the medial surface. It is not, however, guaranteed that the marching cubes algorithm can contour those medial cells (in short, not “marching cubeable”). In this study, therefore we developed cell operations that correct topological connectivity to guarantee such marching cubeability. We then use this method to assign virtual signs to the voxels to apply the marching cubes algorithm to generate triangular meshes of a medial surface and map the thicknesses of thin-plate structures to the triangle meshes as textures. A prototype system was developed to verify some experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call