Abstract

A contouring controller for biaxial systems that integrates the effects of feedback, feedforward, and cross-coupled control is proposed in this study. Conventional approaches to contouring control suffer from the complicated contour-error model and from lack of a systematic way for controller design. The integrated controller is based on polar coordinates under which a relatively simple contour-error model can be obtained. Taking the simple contour error as a state variable, the contouring-control problem is transformed into a stabilization problem. The feedback-linearization technique incorporated with linear feedback or robust control (such as sliding-mode control) can then yield the integrated controller. The proposed method is verified both numerically and experimentally and is compared with the conventional approach. It is found that the proposed controller is better for high speed and/or noncircular contouring. In addition, it can be applied to either linear plants or nonlinear plants (like linear motors).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call