Abstract
We propose a novel approach to sufficient dimension reduction in regression, based on estimating contour directions of small variation in the response. These directions span the orthogonal complement of the minimal space relevant for the regression and can be extracted according to two measures of variation in the response, leading to simple and general contour regression (SCR and GCR) methodology. In comparison with existing sufficient dimension reduction techniques, this contour-based methodology guarantees exhaustive estimation of the central subspace under ellipticity of the predictor distribution and mild additional assumptions, while maintaining $\sqrt{n}$-consistency and computational ease. Moreover, it proves robust to departures from ellipticity. We establish population properties for both SCR and GCR, and asymptotic properties for SCR. Simulations to compare performance with that of standard techniques such as ordinary least squares, sliced inverse regression, principal Hessian directions and sliced average variance estimation confirm the advantages anticipated by the theoretical analyses. We demonstrate the use of contour-based methods on a data set concerning soil evaporation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.