Abstract

Hess and Dakin [Nature 390 (1997) 602; Vision Res. 39 (1999) 947] reported that normally-sighted subjects using peripheral vision (beyond 10°) were unable to detect paths of alternating-phase Gabors embedded within randomly positioned Gabors, but could detect same-phase paths. This result led them to propose a “fundamental difference” between central and peripheral visual processing. While we were able to replicate many of their results, our normally-sighted observers could detect alternating-phase paths beyond 10°. We found that path detection decreased monotonically as a function of eccentricity (0°–30°) for both alternating-phase and same-phase stimuli. As with most visual functions the more difficult path detection condition (alternating-phase) declined slightly faster. The results for the normally-sighted observers could not be explained by poor fixation. Three people with substantial central vision loss (i.e. they can only use peripheral vision) could see both same- and alternating-phase stimuli with eccentric viewing of 13°–17°. Therefore central and peripheral vision appear to use similar visual mechanisms to perform the task, there being no fundamental difference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.