Abstract
Virasoro constraints are imposed on the partition function of the one-matrix models at the discrete level before the continuum limit is taken. After a preliminary discussion of the role of the Virasoro constraints and the associated Virasoro group orbit structure in the proof of universality, the interrelation between discrete and continuum Virasoro constraints is considered. As an intermediate step, the model of complex matrices is discussed. An appropriate change of time variables for the continuum limit (Kazakov's or “admissible”) as well as time-dependent rescales of the partition function are introduced in the approaches of orthogonal polynomials and loop equations. Even after these modifications, Virasoro constraints do not possess a nice continuum limit in the model of complex matrices because of additional constant terms in the Virasoro generators. These terms are eliminated in the case of the reduced hermitean matrix model so that the results of Fukuma et al. and Dijkgraaf et al. are rigorously derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.