Abstract

This paper deals with the solution of the spherically symmetric time-dependent Hartree-Fock approximation applied in the case of nuclear giant monopole resonances in the small and large amplitude regimes. The problem is spatially unbounded as the resonance state is in the continuum. The practical requirement to perform the calculation in a finite-sized spatial region results in a difficulty with the spatial boundary conditions. Here we propose an absorbing boundary condition scheme to handle the conflict. The derivation, via a Laplace transform method, and implementation is described. The accuracy and efficiency of the scheme is tested and the results presented to support the case that they are a effective way of handling the artificial boundary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call