Abstract
A new method is proposed for shape sensitivity analysis of a crack in a homogeneous, isotropic, and nonlinearly elastic body subject to mode I loading conditions. The method involves the material derivative concept of continuum mechanics, domain integral representation of the J-integral, and direct differentiation. Unlike virtual crack extension techniques, no mesh perturbation is required in the proposed method. Since the governing variational equation is differentiated before the process of discretization, the resulting sensitivity equations are independent of any approximate numerical techniques. Based on the continuum sensitivities, the first-order reliability method was employed to perform probabilistic analysis. Numerical examples are presented to illustrate both the sensitivity and reliability analyses. The maximum difference between the sensitivity of stress-intensity factors calculated using the proposed method and the finite-difference method is less than four percent. Since all gradients are calculated analytically, the reliability analysis of cracks can be performed efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.