Abstract

This note highlights the subtle difference between two measures of fluctuating kinetic energy of the particulate phase in gas-solids flow. One measure arises from kinetic theory, here identified as granular temperature (T), and a second measure resulting from a spatial average, here denoted κ. Somewhat surprisingly, continuum models derived from a kinetic theory considering a single, scalar granular temperature, which is further assumed to be isotropic, is still able to predict anisotropic spatially averaged fluctuating kinetic energies. Furthermore, the scale dependence of the spatially averaged can also be extracted. Comparisons of the continuum predictions to recent direct numerical data are striking, particularly for larger averaging volumes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.