Abstract

Meso-scale calculations of energy localization and initiation in energetic material microstructures must capture the deformation and collapse of pores and high-temperature shear bands, which lead to hotspots. Because chemical reaction rates depend sensitively on temperature, predictive continuum models need to get the pore-collapse dynamics and resulting hotspot temperatures right; this imposes stringent demands on the fidelity of thermophysical model forms and parameters and on the numerical methods employed to perform high-resolution meso-scale calculations. Here, continuum material models for β-HMX are examined in the context of shock-induced pore collapse, treating predictions from all-atom molecular dynamics (MD) simulations as ground truth. Using atomistics-consistent material properties, we show that the currently available strength models for HMX fail to correctly capture pore collapse and hotspot temperatures. Insights from MD are then employed to advance a Modified Johnson–Cook (M-JC) strength model, which is shown to capture key aspects of the physics of shock-induced localization in HMX. The study culminates in a MD-guided strength model for β-HMX that produces continuum pore-collapse results in better alignment on several aspects with those predicted by MD, including pore-collapse mechanism and rate, shear-band formation in the collapse zone, and temperature, strain, and stress fields in the hotspot zone and the surrounding material. The resulting MD-informed/MD-determined M-JC model should improve the fidelity of meso-scale simulations to predict the detonation initiation of HMX-based energetic materials in microstructure-aware multi-scale frameworks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.